Abstract

Automatic defect detection is gaining huge importance in photovoltaic (PV) field due to limited application of manual/visual inspection and rising production quantities of PV modules. This study is conducted for automatic detection of PV module defects in electroluminescence (EL) images. We presented a novel approach using light convolutional neural network architecture for recognizing defects in EL images which achieves state of the art results of 93.02% on solar cell dataset of EL images. It requires less computational power and time. It can work on an ordinary CPU computer while maintaining real time speed. It takes only 8.07 ms for predicting one image. For proposing light architecture, we perform extensive experimentation on series of architectures. Moreover, we evaluate data augmentation operations to deal with data scarcity. Overfitting appears a significant problem; thus, we adopt appropriate strategies to generalize model. The impact of each strategy is presented. In addition, cracking patterns and defects that can appear in EL images are reviewed; which will help to label new images appropriately for predicting specific defect types upon availability of large data. The proposed framework is experimentally applied in lab and can help for automatic defect detection in field and industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.