Abstract
Device-free localization technology aims to find a target by analyzing the signal strength difference between transmitter and receiver deployed in the target area in advance. Up to now, device-free localization technology has been applied to a wide range of applications and scenarios, such as intrusion detection, environment modeling, and activity recognition. However, some sensors remain at potential risk that signal strength values of sensors have been tampered, or even devices sensors are physically damaged, which leads to inaccurate location results or a whole system crash. To solve the abovementioned problems, we design a CNN-based attack defense method for device-free localization, which can discover falsified signal strength values and error-prone devices. Firstly, we simulate a partial sensor attack or dropout in the device-free localization scenario. Then, we transform the localization problem into an image classification problem and use the convolutional neural networks (CNN) technique for abnormal detection. The experiment result shows that our algorithm can maintain high localization accuracy even under most sensor compromised and disconnected circumstances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.