Abstract

Plants are able to sense and respond to changes in the balance between carbon (C) and nitrogen (N) metabolite availability, known as the C/N response. During the transition to photoautotrophic growth following germination, growth of seedlings is arrested if a high external C/N ratio is detected. To clarify the mechanisms for C/N sensing and signaling during this transition period, we screened a large collection of FOX transgenic plants, overexpressing full-length cDNAs, for individuals able to continue post-germinative growth under severe C/N stress. One line, cni1-D (carbon/nitrogen insensitive 1-dominant), was shown to have a suppressed sensitivity to C/N conditions at both the physiological and molecular level. The CNI1 cDNA encoded a predicted RING-type ubiquitin ligase previously annotated as ATL31. Overexpression of ATL31 was confirmed to be responsible for the cni1-D phenotype, and a knock-out of this gene resulted in hypersensitivity to C/N conditions during post-germinative growth. The ATL31 protein was confirmed to contain ubiquitin ligase activity using an in vitro assay system. Moreover, removal of this ubiquitin ligase activity from the overexpressed protein resulted in the loss of the mutant phenotype. Taken together, these data demonstrated that CNI1/ATL31 activity is required for the plant C/N response during seedling growth transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.