Abstract

ABSTRACTHigh-energy lithium-sulfur (Li-S) batteries still suffer from poor rate capability and short cycle life caused by the polysulfides shuttle and insulating nature of S (and the discharge product, Li2S). Selenium disulfide (SeS2), with a theoretical specific capacity of 1342 mAh g−1, is a promising cathode material as it has better conductivity compared to sulfur. The electrochemical reaction kinetics of CNFs-S/SeS2 composites (denoted as CNFs/S1-xSex, where x ≤ 0.1) are expected to be remarkably improved because of the better conductivity of SeS2 compared to sulfur. Here, a high-performance composite cathode material of CNFs/S1-xSex for novel Li-S batteries is reported. The CNFs/S1-xSex composites combine the higher conductivity and higher density of SeS2 with high specific capacity of sulfur. The CNFs/S1-xSex electrode shows good initial discharge capacity of ∼1050 mAh g−1 at 0.05 C rate with high mass loading of materials (∼6-7 mg cm−2 of composites) and > 97% initial coulombic efficiency. The CNFs/S1-xSex electrode shows more than 600 mAh g-1 specific capacity after 50 charge-discharge cycles at 0.5C rate, much higher compared to the CNFs/S cathodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.