Abstract
The heart requires a substantial amount of energy to function, utilising various substrates including lipids, glucose and lactate as energy sources. In times of increased stress, lactate becomes the primary energy source of the heart, but persistently elevated lactate levels are linked to poor patient outcomes and increased mortality. Recently, carnosine dipeptidase II (CNDP2) was discovered to catalyse the formation of Lac-Phe, an exercise-induced metabolite derived from lactate, which has been shown to suppress appetite in mice and reduce adipose tissue in humans. This review discusses CNDP2, including its role in lactate clearance, carnosine hydrolysis, oxidative stress regulation, and involvement in metabolite regulation. The association between CNDP2 and cardiometabolic and renal diseases is also explored, and knowledge gaps are highlighted. CNDP2 appears to be a complex participant in human physiological processes and disease, necessitating additional research to unveil its functions and potential therapeutic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.