Abstract

Abstract A strongly electron deficient and high triplet energy host for blue emitters was developed by decorating a dibenzofuran modified biphenyl backbone structure with multiple CN units. Two hosts, 6,6′-bis(6-cyanodibenzo[b,d]furan-4-yl)-[1,1′-biphenyl]-3,3′-dicarbonitrile(CNDBF1) and 2,2′-bis(6-cyanodibenzo[b,d]furan-4-yl)-[1,1′-biphenyl]-4,4′-dicarbonitrile(CNDBF2), were derived from the CN decoration strategy for application in blue organic light-emitting diodes requiring high triplet energy host. They showed high triplet energy above 2.79 eV and acted as the electron transport type host based on the strong electron deficiency. The mixture of the CNDBF1 and CNDBF2 hosts with a hole transport type 3,3′-di(9H-carbazol-9-yl)-1,1′-biphenyl host performed as the exciplex host of a blue phosphor and accomplished high external quantum efficiency of 22.7% in the blue phosphorescent organic light-emitting diodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.