Abstract

Cardiac myosin binding protein C (cMyBP-C) is a cardiac structural and regulatory protein; mutations of cMyBP-C are frequently associated with hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Cardiac special transcription factors may regulate the expression of cMyBP-C. However, the role of cMyBP-C in congenital heart diseases (CHD) remains poorly understood. In the current study, western blotting and the MRM approach showed that cMyBP-C expression was significantly reduced in fetuses with CHD compared to those without. Furthermore, we found that cMyBP-C interacted with KLHL3 by immunoprecipitation and immunofluorescence, and the degradation of cMyBP-C was caused by KLHL3-mediated ubiquitination. In addition, homocysteine (Hcy, a risk factor of CHD) treatment caused a decrease in cMyBP-C and an increase in KLHL3 expression, and the proteasome inhibitor MG132 reversed the Hcy-induced reduction of cMyBP-C expression. Finally, we verified that reduced cMyBP-C by Hcy promoted apoptosis in cardiomyocytes. These results demonstrate that Hcy decreases the expression of cMyBP-C through a KLHL3-mediated ubiquitin–proteasome pathway, and thereby influences heart development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.