Abstract

In this paper, we introduce capacitive micro-machined ultrasonic transducers (CMUTs) with electrically isolated multiple electrodes embedded in the same silicon nitride CMUT membrane. Some of the advantages of this structure are demonstrated using a dual-electrode CMUT with separate transmit and receive electrodes as an example. By locating the transmit electrodes near the edges of a rectangular CMUT membrane, the stable displacement range, hence the maximum pressure amplitude during transmit mode is increased without collapsing the membrane when operated within static collapse voltage range. In the receive mode, the center receive electrode is brought closer to the substrate by biasing the side electrodes, and a higher electromechanical transformer ratio is obtained at low direct current (DC) bias. Therefore, dual-electrode CMUT has an effectively larger gap as compared to conventional CMUT during transmit, and it has an effectively smaller gap during receive. Demonstrative experiments are performed on dual-electrode CMUTs with rectangular membranes with different side and center electrode sizes for transmit and receive measurements. By using the two 4-microm wide side electrodes and an 8-microm wide center electrode on a 20-microm wide membrane, a 6.8 dB increase in maximum output pressure is obtained with side electrode excitation as compared to conventional center electrode. Similarly, the receive performance improvement was demonstrated while reducing the DC bias requirements. Simple finite-element and equivalent circuit-based models were developed to successfully model the behavior of dual-electrode CMUTs. Simulations show that, with simple modifications, more than 10 dB overall sensitivity improvement is feasible with dual-electrode CMUTs with rectangular membranes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call