Abstract
BackgroundGliomas in the adult brain are complicated and aggressive with a poor prognosis. Gene therapy is a recent alternative glioma treatment. We sought to explore the mechanism of chemokine-like factor (CKLF) MARVEL transmembrane domain-containing 6 (CMTM6) in glioma.MethodsThe Cancer Genome Atlas database reports that CMTM6 is expressed in tumors and glioma tissue. CMTM6 expression in glioma tissues and cells was detected and its relationship with clinical pathology was analyzed. Short hairpin ribonucleic acid-CMTM6 lentivirus was transfected into U87 and U251 cells to evaluate malignant glioma cells. Using the biological website (https://string-db.org/cgi/input.pl?Sessionid) and reference retrieval, the pathway that interacted with CMTM6 and related to glioma was identified. The level of the mammalian target of rapamycin pathway-related proteins was detected. Functional rescue experiments were performed using the combination of mTOR activator MHY1485 and the knockdown CMTM6. The growth of xenograft tumors was observed and Ki67-positive expression was determined.ResultsCMTM6 upregulation in gliomas was associated with a poor prognosis. CMTM6 expression was notably higher in gliomas. After the knockdown of CMTM6, the proliferation, invasion, and migration of U87 and U251 cells were inhibited, and the apoptosis rate was increased. Knocking down CMTM6 inactivated the mTOR pathway. The activation of mTOR pathway reversed the inhibitory effects of CMTM6 knockdown on glioma cell behaviors. CMTM6 knockdown reduced tumor volume, body mass, and Ki67-positive expression.ConclusionsThe knockdown of CMTM6 inhibited the activation of mTOR pathway and prevented the malignant episodes of glioma cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.