Abstract
Charco-Marie-Tooth type 2B (CMT2B) neuropathy is a rare autosomal-dominant axonal disorder characterized by distal weakness, muscle atrophy, and prominent sensory loss often complicated by foot ulcerations. CMT2B is associated with mutations of the Rab7 protein, a small GTPase controlling late endocytic traffic. Currently, it is still unknown how these mutations cause the neuropathy. Indeed, CMT2B selectively affects neuronal processes, despite the ubiquitous expression of Rab7. Therefore, this study focused on whether these disorder-associated mutations exert an effect on neurite outgrowth. We observed a marked inhibition of neurite outgrowth upon expression of all the CMT2B-associated mutants in the PC12 and Neuro2A cell lines. Thus, our data strongly support previous genetic data which proposed that these Rab7 mutations are indeed causally related to CMT2B. Inhibition of neurite outgrowth by these CMT2B-associated Rab7 mutants was confirmed biochemically by impaired up-regulation of growth-associated protein 43 (GAP43) in PC12 cells and of the nuclear neuronal differentiation marker NeuN in Neuro2A cells. Expression of a constitutively active Rab7 mutant had a similar effect to the expression of the CMT2B-associated Rab7 mutants. The active behavior of these CMT2B-associated mutants is in line with their previously demonstrated increased GTP loading, thus confirming that active Rab7 mutants are responsible for CMT2B. Our findings provide an explanation for the ability of CMT2B-associated Rab7 mutants to override the activity of wild-type Rab7 in heterozygous patients. Thus, our data suggest that lowering the activity of Rab7 in neurons could be a targeted therapy for CMT2B.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.