Abstract

Charcot-Marie-Tooth neuropathies (CMT) constitute a group of common but highly heterogeneous, non-syndromic genetic disorders affecting predominantly the peripheral nervous system. CMT type 1A (CMT1A) is the most frequent type and accounts for almost ~50% of all diagnosed CMT cases. CMT1A results from the duplication of the peripheral myelin protein 22 (PMP22) gene. Overexpression of PMP22 protein overloads the protein folding apparatus in Schwann cells and activates the unfolded protein response. This leads to Schwann cell apoptosis, dys- and de- myelination and secondary axonal degeneration, ultimately causing neurological disabilities. During the last decades, several different gene therapies have been developed to treat CMT1A. Almost all of them remain at the pre-clinical stage using CMT1A animal models overexpressing PMP22. The therapeutic goal is to achieve gene silencing, directly or indirectly, thereby reversing the CMT1A genetic mechanism allowing the recovery of myelination and prevention of axonal loss. As promising treatments are rapidly emerging, treatment-responsive and clinically relevant biomarkers are becoming necessary. These biomarkers and sensitive clinical evaluation tools will facilitate the design and successful completion of future clinical trials for CMT1A.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.