Abstract

Background/objective Constrictive pericarditis (CP) is an important cause of heart failure; however, with accurate diagnosis and directed treatment it is potentially curable. Cardiac magnetic resonance imaging (CMR) has played a diagnostic role, primarily by allowing assessment of pericardial morphology but with limited depiction of physiological changes. We sought to examine the feasibility of a novel CMR approach that enables real-time phase contrast (RT-PC) assessment of discordant respirophasic changes in trans-mitral and tricuspid flow velocity the signature findings in CP due to enhanced ventricular interdependence. Method Patients referred to the CMR lab pre-pericardectomy or for assessment of suspected CP were included. Following routine CMR examination for CP, transmitral (MV) and tricuspid valve (TV) flow velocities were simultaneously obtained by through-plane RT-PC imaging during unrestricted respiration using a slice position to include both valves (Figure 1) with the following parameters: TR/TE=13.7ms/2.5ms, water excitation pulse with flip angle=25, 10mm slice thickness, 160x120 matrix, EPI factor=15, TSENSE rate=2, slice thickness=10mm, and VENC=150cm/s. Shared velocity encoding was used to achieve an effective temporal

Highlights

  • Background/objective Constrictive pericarditis (CP) is an important cause of heart failure; with accurate diagnosis and directed treatment it is potentially curable

  • We sought to examine the feasibility of a novel Cardiac magnetic resonance imaging (CMR) approach that enables real-time phase contrast (RT-PC) assessment of discordant respirophasic changes in trans-mitral and tricuspid flow velocity - the signature findings in CP - due to enhanced ventricular interdependence

  • Discordant respirophasic flow velocities across the mitral and tricuspid valves were recorded in all CP patients (Figure 2), with mean trans-mitral and tricuspid flow velocity variation measuring 46±21% and 60±16% respectively, compared to 17±5% (p=0.003) and 30±13% in controls (p

Read more

Summary

Introduction

Background/objective Constrictive pericarditis (CP) is an important cause of heart failure; with accurate diagnosis and directed treatment it is potentially curable. We sought to examine the feasibility of a novel CMR approach that enables real-time phase contrast (RT-PC) assessment of discordant respirophasic changes in trans-mitral and tricuspid flow velocity - the signature findings in CP - due to enhanced ventricular interdependence

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.