Abstract

BackgroundQuantification of cardiac output and pulmonary vascular resistance (PVR) are critical components of invasive hemodynamic assessment, and can be measured concurrently with pressures using phase contrast CMR flow during real-time CMR guided cardiac catheterization.MethodsOne hundred two consecutive patients underwent CMR fluoroscopy guided right heart catheterization (RHC) with simultaneous measurement of pressure, cardiac output and pulmonary vascular resistance using CMR flow and the Fick principle for comparison. Procedural success, catheterization time and adverse events were prospectively collected.ResultsRHC was successfully completed in 97/102 (95.1%) patients without complication. Catheterization time was 20 ± 11 min. In patients with and without pulmonary hypertension, baseline mean pulmonary artery pressure was 39 ± 12 mmHg vs. 18 ± 4 mmHg (p < 0.001), right ventricular (RV) end diastolic volume was 104 ± 64 vs. 74 ± 24 (p = 0.02), and RV end-systolic volume was 49 ± 30 vs. 31 ± 13 (p = 0.004) respectively. 103 paired cardiac output and 99 paired PVR calculations across multiple conditions were analyzed. At baseline, the bias between cardiac output by CMR and Fick was 5.9% with limits of agreement −38.3% and 50.2% with r = 0.81 (p < 0.001). The bias between PVR by CMR and Fick was −0.02 WU.m2 with limits of agreement −2.6 and 2.5 WU.m2 with r = 0.98 (p < 0.001). Correlation coefficients were lower and limits of agreement wider during physiological provocation with inhaled 100% oxygen and 40 ppm nitric oxide.ConclusionsCMR fluoroscopy guided cardiac catheterization is safe, with acceptable procedure times and high procedural success rate. Cardiac output and PVR measurements using CMR flow correlated well with the Fick at baseline and are likely more accurate during physiological provocation with supplemental high-concentration inhaled oxygen.Trial registrationClinicaltrials.gov NCT01287026, registered January 25, 2011.

Highlights

  • Quantification of cardiac output and pulmonary vascular resistance (PVR) are critical components of invasive hemodynamic assessment, and can be measured concurrently with pressures using phase contrast cardiovascular magnetic resonance (CMR) flow during real-time CMR guided cardiac catheterization

  • Quantification of cardiac output in the cardiac catheterization laboratory is a central component of hemodynamic assessment

  • CMR flow measurements have been shown to be superior to Fick for calculation of hemodynamic parameters such as cardiac output and pulmonary vascular resistance that establish diagnosis, guide treatment and inform prognosis [6]

Read more

Summary

Introduction

Quantification of cardiac output and pulmonary vascular resistance (PVR) are critical components of invasive hemodynamic assessment, and can be measured concurrently with pressures using phase contrast CMR flow during real-time CMR guided cardiac catheterization. Calculations using the Fick principle require knowledge of oxygen consumption (VO2) that is rarely measured directly, and instead is usually assumed from age, sex and heart rate [2,3,4]. Both methods commonly are inaccurate by over 25%. CMR flow measurements have been shown to be superior to Fick for calculation of hemodynamic parameters such as cardiac output and pulmonary vascular resistance that establish diagnosis, guide treatment and inform prognosis [6]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.