Abstract
This paper describes the design and development of three types of complementary metal-oxide-semiconductor (CMOS) interface circuitry for low-voltage micromachined tunneling accelerometers. Using a simple inductance-capacitance-resistance (LCR) circuit as well as two nonlinear current/voltage-controlled current sources, an electromechanical model enables simulating and predicting the performance of the accelerometer with CMOS interface circuitry. Of the three types of interface circuitry, the one utilizing a pn-junction diode as a logarithmic current-to-voltage converter has the best performance. The hybrid sensor-circuit module can be incorporated into a portable battery-operated multisensor instrumentation microsystem. Only one 12-V power supply is required for device operation with a power dissipation of 2.5 mW. The accelerometer has a sensitivity of 125 mV/g and bandwidth of 2.5 kHz with a measurement range of 30 g. The noise spectral density with a 1/f behavior drops from 4 mg//spl radic/(Hz) (at 0.5 Hz) to 0.1 mg//spl radic/(Hz) (at 2.5 kHz). The accelerometer in turn provides a dynamic range over 71 dB with a minimum detectable acceleration of 8 mg in a bandwidth of 2.5 kHz. In continuous operation over 720 h, the long-term variations of the output offset voltage and device sensitivity are /spl plusmn/10 mV (0.12%) and /spl plusmn/0.2 mV/g (0.15%), respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.