Abstract

A novel CMOS integrated Micro-Electro-Mechanical capacitive pressure sensor in SiGe MEMS (Silicon Germanium Micro-Electro-Mechanical System) process is designed and analyzed. Excellent mechanical stress---strain behavior of Polycrystalline Silicon Germanium (Poly-SiGe) is utilized effectively in this MEMS design to characterize the structure of the pressure sensor diaphragm element. The edge clamped elliptic structured diaphragm uses semi-major axis clamp springs to yield high sensitivity, wide dynamic range and good linearity. Integrated on-chip signal conditioning circuit in 0.18 μm TSMC CMOS process (forming the host substrate base for the SiGe MEMS) is also implemented to achieve a high overall gain of 102 dB for the MEMS sensor. A high sensitivity of 0.17 mV/hPa (@1.4 V supply), with a non linearity of around 1 % is achieved for the full scale range of applied pressure load. The diaphragm with a wide dynamic range of 100---1,000 hPa stacked on top of the CMOS circuitry, effectively reduces the combined sensor and conditioning implementation area of the intelligent sensor chip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call