Abstract

We demonstrate a 980-nm laser-driven CMOS-enabled interdigitated back-contact (IBC) solar cell for biomedical applications. The design of this device leverages from the CMOS process to allow 2-D junction formation and uniform series resistance, but suffers from poor minority carrier properties in bulk substrate. This issue is partially solved in this paper by thinning down the substrate to 60 μm, leading to an ultimate efficiency of 15%. After inserting an emulated tissue loss, an 1.67-mm 2 IBC solar cell is capable of generating an electrical power of 159 μW under a concentrated illumination intensity of 10 mW, which is within the conservative limit to human skin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.