Abstract

In this article, we propose a novel natural light detector based on high-performance silicon nanowire (SiNW) arrays. We achieved a highly controllable and low-cost fabrication of SiNW natural light detectors by using only a conventional micromachined CMOS process. The high activity of SiNWs leads to the poor long-term stability of the SiNW device, and for this reason, we have designed a fully wrapped structure for SiNWs. SiNWs are wrapped in transparent silicon nitride and silicon oxide films, which greatly improves the long-term stability of the detector; at the same time, this structure protects the SiNWs from breakage. In addition, the SiNW arrays are regularly distributed on the top of the detector, which can quickly respond to natural light. The response time of the detector is about 0.015 s. Under the illumination of 1 W·m-2 light intensity, multiple SiNWs were detected together. The signal strength of the detector reached 1.82 μA, the signal-to-noise ratio was 47.6 dB, and the power consumption was only 0.91 μW. The high-intensity and highly reliable initial signal reduces the cost and complexity of the backend signal processing circuit. A low-cost and high-performance STM32 microcontroller can realize the signal processing task. Therefore, we built a high-performance SiNW natural optoelectronic detection system based on an STM32 microcontroller, which achieved the real-time detection of natural light intensity, with an accuracy of ±0.1 W·m-2. These excellent test performances indicate that the SiNW array natural light detector in this article meey the requirements of practicality and has broad potential for application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.