Abstract

A novel electrostatically formed nano-wire (EFN) transistor for temperature sensing is presented. The device is a silicon-on-insulator multigate field-effect transistor, in which a nanowire-shaped conducting channel vertical position and area are controlled by the bias applied to the back gate, and two junction-side gates. Our measurements depict temperature sensitivity of 7.7%/K for EFN transistors which is among the best reported values for semiconductor temperature sensing devices TMOS and FET’s. Optimal operational voltage biases and currents for the EFN transistor regimes are evaluated from measurements and analyzed using three dimensional (3D) electrostatic device simulations and developed analytical model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.