Abstract

A simple model describing the DC behavior of MOS transistors operating in weak inversion is derived on the basis of previous publications. This model includes only two parameters and is suitable for circuit design. It is verified experimentally for both p- and n-channel test transistors of a Si-gate low-voltage CMOS technology. Various circuit configurations taking advantage of weak inversion operation are described and analyzed: two different current references based on known bipolar circuits, an amplitude detector scheme which is then applied to a quartz oscillator with the result of a very low-power consumption (<0.1 /spl mu/W at 32 kHz), and a low-frequency bandpass amplifier. All these circuits are insensitive to threshold and mobility variations, and compatible with a CMOS technology dedicated to digital low-power circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.