Abstract
This paper presents the design and simulation of a 9-Tap CMOS Analog Discrete-Time Finite Impulse Response (FIR) Filter system. This unique design features a Circular Buffer Architecture which achieves high sampling rate that can be easily expanded to improve speed and extended to higher order filters. Novel area-efficient four quadrant CMOS analog adder and multiplier circuits are employed to respond for high frequency and wide linear range inputs. The layout for all circuits has been realized using the design tool MAGIC with a 1.2 μm CMOS process. The performance for each circuit and the whole system are characterized using HSPICE simulation based on the extracted MAGIC netlist. The 9-tap filter was designed to achieve 5 MHz sampling rate. The implemented design requires a total chip area of 1690.9 μm by 2134.2 μm and ±5 volt power supply.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.