Abstract

This talk presents a new method for optimizing and automating component sizing in CMOS analog circuits. It is shown that a wide variety of circuit performance measures have a special form, i.e., they are polynomial functions of the design variables. As a result, circuit design problems can be posed as geometric programs, a special type of convex optimization problem for which very efficient global optimization methods exist. The synthesis method is therefore fast, and determines the globally optimal design; in particular, the final solution is completely independent of the starting point, and infeasible specifications are unambiguously detected. Also, because the method is highly efficient, in practice it can be used to carry out robust designs and quickly explore the design space. We show that despite the restricted form of geometric programs, a large variety of circuit design problems can be posed as geometric programs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.