Abstract

This paper presents a fully monolithic transmission-line-based active bandpass filter (BPF) fabricated in a 0.18-mum standard complementary metal-oxide-semiconductor (CMOS) technology. The half-wavelength resonators are realized by synthetic quasi-TEM complementary conducting-strip transmission lines (CCS TLs). To lower the insertion loss of the BPF, the differential nMOS cross-coupled pairs are combined with the parallel resonators. Besides, the active devices and CCS TLs are vertically integrated on the standard CMOS substrate. The Q-enhanced resonator, which is comprised of a CCS TL and an nMOS cross-coupled pair, is theoretically investigated. Simulation results indicate that the Q factor of the resonator can be increased from 3.4 to 84.0 at 6.53 GHz. Additionally, the prototype of the second-order BPF occupies an area of 1230 mumtimes880 mum, and the measured results demonstrate that the center frequency is 6.02 GHz with a bandwidth of 1.14 GHz. The P1dB and insertion loss are -15.2dBm and 2.2 dB, respectively, when the BPF consumes 3.0 mA from a 1.8-V supply. A two-port noisy network is also reported to examine the noise figure (NF) of the proposed BPF. Theoretical results reveal that the NF is 11.38 dB at 6.0 GHz, with a difference of less than 7.2% among the measured data

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.