Abstract

BackgroundA gene regulatory network (GRN) represents interactions of genes inside a cell or tissue, in which vertexes and edges stand for genes and their regulatory interactions respectively. Reconstruction of gene regulatory networks, in particular, genome-scale networks, is essential for comparative exploration of different species and mechanistic investigation of biological processes. Currently, most of network inference methods are computationally intensive, which are usually effective for small-scale tasks (e.g., networks with a few hundred genes), but are difficult to construct GRNs at genome-scale.ResultsHere, we present a software package for gene regulatory network reconstruction at a genomic level, in which gene interaction is measured by the conditional mutual information measurement using a parallel computing framework (so the package is named CMIP). The package is a greatly improved implementation of our previous PCA-CMI algorithm. In CMIP, we provide not only an automatic threshold determination method but also an effective parallel computing framework for network inference. Performance tests on benchmark datasets show that the accuracy of CMIP is comparable to most current network inference methods. Moreover, running tests on synthetic datasets demonstrate that CMIP can handle large datasets especially genome-wide datasets within an acceptable time period. In addition, successful application on a real genomic dataset confirms its practical applicability of the package.ConclusionsThis new software package provides a powerful tool for genomic network reconstruction to biological community. The software can be accessed at http://www.picb.ac.cn/CMIP/.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-016-1324-y) contains supplementary material, which is available to authorized users.

Highlights

  • A gene regulatory network (GRN) represents interactions of genes inside a cell or tissue, in which vertexes and edges stand for genes and their regulatory interactions respectively

  • The proportion of datasets that satisfies the stringent, standard, and moderate criteria are 45, 75, and 93% respectively. These results demonstrate that the new threshold determination method developed in this study is effective and an appropriate cutoff can be provided on-the-fly during calculation process of correlation

  • CMIP can detect direct gene interactions from indirect ones with a high accuracy based on the conditional mutual information (CMI) measurement

Read more

Summary

Introduction

A gene regulatory network (GRN) represents interactions of genes inside a cell or tissue, in which vertexes and edges stand for genes and their regulatory interactions respectively. In the post-genome era, an important task of molecular biology is to reconstruct gene regulatory networks (GRNs), which represent interactions between genes inside a cell or tissue. A GRN provides molecular interactions and regulatory effects of components involved in a biological process, and provides insights into the molecular mechanism of the process [1, 2]. Reconstruction of GRNs can support investigating roles of genes and components involved in a biological process, and help study how a process is developed and maintained

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.