Abstract

Abstract The objective of this effort is to predict ceramic matrix composites (CMC) interlaminar Mode II Crack Growth Resistance (CGR), and the design of ASTM test specimen. Currently, there are a number of test standards and American Society for Testing and Materials (ASTM) for CMC’s at both ambient and elevated temperatures; however, there are no standardized test methods for determination of interlaminar shear (Mode II) fracture toughness in CMC’s. Although research work exists on interlaminar Mode II fracture toughness of CMC’s, the test methods applied showed definite drawbacks and limitations. Delamination Crack Growth (CGR) tests of CMC Mode II may exhibit zig-zag pattern, wavy cracks, fiber bridging, and premature specimen failure under bending load. The experimental parameters that may contribute to the difficulty can be summarized as specimen width and thickness, interface coating thickness, mixed mode failure evolution, and interlaminar defects. Modes II crack growth resistances, GII, were analytically and numerically determined at ambient temperature using end notched flexure (ENF) and the end-loaded split (ELS). Finite Element (FE) based. Multi-scale progressive failure analysis (MS-PFA) a combined Micro-mechanical damage and fracture mechanics Virtual Crack Closure Technique (VCCT) algorithms. Modeling of melt-infiltrated SiC/SiC CMC of ENF specimen (Laminate: with initial crack length was accomplished using a MS-PFA and VCCT approach. Test data were compared with MS-PFA prediction: a) Force vs. Crack Opening Displacement; and b) Mode II crack tip energy release rate vs. crack extension length for both edge and center line due to formation of Micro Crack Density Contribution, Crack Tip Stiffness Reduction; and c) zig-zag crack growth behavior (adhesive/cohesive). Next the ASTM Standard Proposed linear SGR equation was developed based on interpretation compliance technique from both MS-PFA Analysis and Test.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call