Abstract

We prove that every closed, smooth \(n\)-manifold \(X\) admits a Riemannian metric together with a constant mean curvature (CMC) foliation if and only if its Euler characteristic is zero, where by a CMC foliation we mean a smooth, codimension-one, transversely oriented foliation with leaves of CMC and where the value of the CMC can vary from leaf to leaf. Furthermore, we prove that this CMC foliation of \(X\) can be chosen so that when \(n\ge 2\), the constant values of the mean curvatures of its leaves change sign. We also prove a general structure theorem for any such non-minimal CMC foliation of \(X\) that describes relationships between the geometry and topology of the leaves, including the property that there exist compact leaves for every attained value of the mean curvature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call