Abstract

Development of combination therapy to decrease side effects of chemotherapeutic drugs and increase their utilization rate in combination with gene editing is a key research topic in tumor treatment. The present study aimed to investigate the effect of cationic microbubbles (CMBs) carrying paclitaxel (PTX) and C-erbB-2 knockout plasmid on the endometrial cancer cell line HEC-1A and to determine how C-erbB-2 regulates the function of endometrial cancer cells. Cells were treated with CMB, PTX, PTX-CMBs, cationic plasmid-carrying or cationic PTX-carrying plasmid groups. After verifying the most effective combination of PTX-CMBs and plasmids, HEC-1A cells were transfected. Reverse transcription-quantitative (RT-q)PCR and western blotting were used to measure C-erbB-2 and protein expression. After verifying C-erbB-2 knockout, invasion, healing, clone formation and proliferation of HEC-1A cells were assessed. Simultaneously, expression levels of the genes for P21, P27, mammalian target of rapamycin (mTOR), and Bcl-2 associated death promoter (Bad) were measured by RT-qPCR. Compared with the PTX group, CMBs significantly enhanced the absorption efficiency of PTX by HEC-1A cells. C-erbB-2 knockout had an inhibitory effect on the proliferation, migration and invasion of HEC-1A cells; cell proliferation and invasion of the group carrying PTX and plasmids simultaneously were significantly weakened. The C-erbB-2-knockout group exhibited increased expression of P21 and P27. Simultaneously loading PTX and plasmid may be novel combination therapy with great potential. C-erbB-2 may regulate the proliferation of HEC-1A cells by downregulating expression of P21 and P27.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call