Abstract

Standard analyses of the reionization history of the Universe from Planck cosmic microwave background (CMB) polarization measurements consider only the overall optical depth to electron scattering (τ), and further assume a step-like reionization history. However, the polarization data contain information beyond the overall optical depth, and the assumption of a step-like function may miss high redshift contributions to the optical depth and leads to biased τ constraints. Accounting for its full reionization information content, we reconsider the interpretation of Planck 2015 Low-Frequency Instrument (LFI) polarization data using simple, yet physically motivated reionization models. We show that these measurements still, in fact, allow a non-negligible contribution from metal-free (Pop-III) stars forming in mini-haloes of mass M ∼ 105–106 M⊙ at z ≳ 15, provided this mode of star formation is fairly inefficient. We find that an early, self-regulated phase of Pop-III star formation with a gradual, plateau feature in the ionization history provides a good match to the Planck LFI measurements. In this case, as much as 20 per cent of the volume of the Universe is ionized by z ∼ 20. Although preferred when the full information content of the data is incorporated, this model would spuriously be disfavoured in the standard analysis. This preference is driven mostly by excess power from E-mode polarization at multipoles of 10 ≲ ℓ ≲ 20, which may reflect remaining systematic errors in the data, a statistical fluctuation or signatures of the first stars. Measurements from the Planck High-Frequency Instrument should be able to confirm or refute this hint and future cosmic-variance-limited E-mode polarization surveys can provide substantially more information on these signatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.