Abstract

Signatures of lensing of the cosmic microwave background radiation by gravitational potentials along the line of sight carry with them information on the matter distribution, neutrino masses, and dark energy properties. We examine the constraints that Planck, PolarBear, and CMBpol future data, including from the B-mode polarization or the lensing potential, will be able to place on these quantities. We simultaneously fit for neutrino mass and dark energy equation of state including time variation and early dark energy density, and compare the use of polarization power spectra with an optimal quadratic estimator of the lensing. Results are given as a function of systematics level from residual foreground contamination. A realistic CMBpol experiment can effectively constrain the sum of neutrino masses to within 0.05 eV and the fraction of early dark energy to 0.002. We also present a surprisingly simple prescription for calculating dark energy equation of state constraints in combination with supernova distances from JDEM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.