Abstract

The higher operating temperatures in gas-turbine engines made possible by thermal barrier coatings (TBCs) are engendering a new problem: environmentally ingested airborne silicate particles (sand, ash) melt on the hot TBC surfaces and form calcium-magnesium-alumino-silicate (CMAS) glass deposits. The molten CMAS glass degrades the TBCs, leading to their premature failure. Here, we demonstrate the use of a commercially manufactured feedstock powder, in conjunction with air plasma spray process, to deposit CMAS-resistant yttria-stabilized zirconia-based TBCs containing Al3+ and Ti4+ in solid solution. Results from the characterization of these new TBCs and CMAS/TBCs interaction experiments are presented. The CMAS mitigation mechanisms in these new TBCs involve the crystallization of the anorthite phase. Raman microscopy is used to generate large area maps of the anorthite phase in the CMAS-interacted TBCs demonstrating the potential usefulness of this method for studying CMAS/TBCs interactions. The ubiquity of airborne sand/ash particles and the ever-increasing demand for higher operating temperatures in future high efficiency gas-turbine engines will necessitate CMAS resistance in all hot-section components of those engines. In this context, the versatility, ease of processing, and low cost offered by the process demonstrated here could benefit the development of these new CMAS-resistant TBCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call