Abstract
Like other methods for motor unit number estimation (MUNE), compound muscle action potential (CMAP) scan MUNE (MScan) is a non-invasive electrophysiologic method to estimate the number of functioning motor units in a muscle. MUNE is an important tool for the assessment of neuropathies and neuronopathies. Unlike most MUNE methods in use, MScan assesses all the motor units in a muscle, by fitting a model to a detailed stimulus-response curve, or CMAP scan. It thereby avoids the bias inherent in all MUNE methods based on extrapolating from a small sample of units. Like 'Bayesian MUNE,'MScan analysis works by fitting a model, made up of motor units with different amplitudes, thresholds, and threshold variabilities, but the fitting method is quite different, and completed within five minutes, rather than several hours. The MScan off-line analysis works in two stages: first, a preliminary model is generated based on the slope and variance of the points in the scan, and second, this model is then refined by adjusting all the parameters to improve the fit between the original scan and scans generated by the model. This new method has been tested for reproducibility and recording time on 22 amyotrophic lateral sclerosis (ALS) patients and 20 healthy controls, with each test repeated twice by two blinded physicians. MScan showed excellent intra- and inter-rater reproducibility with ICC values of >0.98 and a coefficient of variation averaging 12.3 ± 1.6%. There was no difference in the intra-rater reproducibility between the two observers. Average recording time was 6.27 ± 0.27 min. This protocol describes how to record a CMAP scan and how to use the MScan software to derive an estimate of the number and sizes of the functioning motor units. MScan is a fast, convenient, and reproducible method, which may be helpful in diagnoses and monitoring disease progression in neuromuscular disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.