Abstract

This paper describes the application of cerebellar model articulation controller (CMAC) and B-spline neural networks to switched reluctance motor (SRM) torque estimation and control. Non-linear adaptive systems such as neural networks are well suited to learning the highly non-linear electromagnetic characteristics of the SRM for the purposes of linearisation and simplification of their control and a number of researchers have investigated their use in this context. CMAC and B-spline neural networks are particularly suited to this application area due to their potential for low-cost, high-speed implementation including the capability for real-time, on-line adaptation. CMAC and B-spline neural networks have successfully been applied both to torque ripple minimisation and to torque estimation in simulation and, implemented using FPGA technology, experimentally. This paper describes those applications with particular emphasis on the suitability of the CMAC and B-spline neural networks and gives details of their FPGA implementation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.