Abstract
Cohen and Odoni prove that every CM–field can be generated by an eigenvalue of some skew–symmetric matrix with rational coefficients. It is natural to ask for the minimal dimension of such a matrix. They show that every CM–field of degree 2n is generated by an eigenvalue of a skew–symmetric matrix over Q of dimension at most 4n+2. The aim of the present paper is to improve this bound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.