Abstract

Data ingestion validation, the task of certifying the quality of continuously collected data, is crucial to ensure trustworthiness of analytics insights. A widely used approach for validating data quality is to specify, either manually or automatically, so-called data unit tests that check whether data quality metrics lie within expected bounds. We employ conditional unit tests based on conditional metrics (CMs) that compute data quality signals over specific parts of the ingestion data and therefore allow for a fine-grained detection of errors. A violated conditional unit test specifies a set of erroneous tuples in a natural way: the subrelation that its CM refers to. Unfortunately, the downside of their fine-grained nature is that violating unit tests are often correlated: a single error in an ingestion batch may cause multiple tests (each referring to different parts of the batch) to fail. The key challenge is therefore to untangle this correlation and filter out the most relevant violated conditional unit tests, i.e., tests that identify a core set of erroneous tuples and act as an explanation for the errors. We present CM-Explorer, a system that supports data stewards in quickly finding the most relevant violated conditional unit tests. The system consists of three components: (1) a graph explorer for visualizing the correlation structure of the violated unit tests; (2) a relation explorer for browsing the tuples selected by conditional unit tests; and, (3) a history explorer to get insight why conditional unit tests are violated. In this paper, we discuss these components and present the different scenarios that we make available for the demonstration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call