Abstract

Purpose To evaluate the biodistribution, metabolism, and pharmacokinetics of a new type I collagen-targeted magnetic resonance (MR) probe, CM-101, and to assess its ability to help quantify liver fibrosis in animal models. Materials and Methods Biodistribution, pharmacokinetics, and stability of CM-101 in rats were measured with mass spectrometry. Bile duct-ligated (BDL) and sham-treated rats were imaged 19 days after the procedure by using a 1.5-T clinical MR imaging unit. Mice were treated with carbon tetrachloride (CCl4) or with vehicle two times a week for 10 weeks and were imaged with a 7.0-T preclinical MR imaging unit at baseline and 1 week after the last CCl4 treatment. Animals were imaged before and after injection of 10 µmol/kg CM-101. Change in contrast-to-noise ratio (ΔCNR) between liver and muscle tissue after CM-101 injection was used to quantify liver fibrosis. Liver tissue was analyzed for Sirius Red staining and hydroxyproline content. The institutional subcommittee for research animal care approved all in vivo procedures. Results CM-101 demonstrated rapid blood clearance (half-life = 6.8 minutes ± 2.4) and predominately renal elimination in rats. Biodistribution showed low tissue gadolinium levels at 24 hours (<3.9% injected dose [ID]/g ± 0.6) and 10-fold lower levels at 14 days (<0.33% ID/g ± 12) after CM-101 injection with negligible accumulation in bone (0.07% ID/g ± 0.02 and 0.010% ID/g ± 0.004 at 1 and 14 days, respectively). ΔCNR was significantly (P < .001) higher in BDL rats (13.6 ± 3.2) than in sham-treated rats (5.7 ± 4.2) and in the CCl4-treated mice (18.3 ± 6.5) compared with baseline values (5.2 ± 1.0). Conclusion CM-101 demonstrated fast blood clearance and whole-body elimination, negligible accumulation of gadolinium in bone or tissue, and robust detection of fibrosis in rat BDL and mouse CCl4 models of liver fibrosis. © RSNA, 2017 Online supplemental material is available for this article.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.