Abstract
Integration of distributed generation (DG) at large scale with high penetration challenges the radial structure of the traditional distribution networks and the effectiveness of the conventional voltage regulation methods. In this study, the clusters partitioning and voltage regulation are researched. The modified electrical distance is introduced. An effective method, based on spectral clustering algorithm, is proposed for the partitioning of the DG network via the judgement of critical load buses. Two-stage voltage regulation optimisation is realised in each sub-community. The optimal objects are the minimal voltage fluctuation and the network loss of the distributed network. The independent variables are reactive-power absorption and active-power curtailment for each controllable photovoltaic node. An advanced particle swarm optimisation algorithm is applied to the voltage regulation for the sub-communities. After a case study of the IEEE 33-bus system, a regional distribution network in Anhui province of China is analysed. Simulation results indicate that the node voltages are stabilised with the improvement of power quality employing the proposed clusters partitioning method and zonal power control scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.