Abstract

Spikes are typical radio bursts in solar flares, which are proposed to be the signal of energy release in the solar corona. The whole group of spikes always shows different spectral patterns in the dynamic spectrum. Here, we present a special new feature at 0.6–2 GHz in a confined flare. Each group of spikes is composed of many quasi-periodic sub-clusters, which are superposed on the broadband quasi-periodic pulsations (QPPs). The quasi-periodic cluster of spikes (QPSs) have very intense emissions, and each cluster includes tens of individual spikes. When the intensity of background pulsation is increased, the intensity, duration and bandwidth of the spike cluster are also enlarged. There are 21 groups of QPSs throughout the confined flare. The central frequency of the whole group shifts from 1.9 to 1.2 GHz, and the duration of each cluster shows a negative exponential decay pattern. We propose that nonthermal electron beams play a crucial role in emitting both pulsations and spikes. The tearing-mode oscillations of a confined flux rope produce periodic accelerated electron beams. These electron beams travel inside the closed magnetic structure to produce frequency drifting pulsations via plasma emission and scattered narrowband spikes by electron-cyclotron maser emission (ECME). The slow rise of flux rope makes the source region move upward, and thus, QPSs shift towards low frequency. We propose that the confined flux rope may provide the essential conditions for the formation of QPSs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call