Abstract
Primate genomes contain a very large number of short interspersed GC-rich repeats of the Alu family, which are abundant in introns and intergenic spacers but also present in 5′ flanking regions of genes enriched in binding motifs (BMs) for transcription factors and frequently containing CpG islands. Here we studied whether CpG islands located in promoters of human genes overlap with Alu repeats and with clusters of BMs for the zinc-finger transcription factors Sp1, estrogen receptor α, and YY1. The presence of estrogen-response elements in Alu was shown earlier and here we confirm the presence in the consensus Alu sequence of the binding sites for Sp1 and YY1. Analyzing >5000 promoters from the two databases we found that Alu sequences are underrepresented in promoters compared to introns and that ∼4% of CpG islands located within the −1000 to +200 segments of human promoters overlap with Alu repeats. Although this fraction was found to be lower for proximal segments of promoters (−500 to +100), our results indicate that a significant number (>1000) of all human genes may be controlled by Alu-associated CpG islands. Analysis of clustering of potential BMs for the indicated transcription factors within some promoters also suggests that the Alu family contributed to the evolution of transcription cis-regulatory modules in the human genome. It is important that among Alu sequences overlapping with CpG islands in promoters a large fraction of members of the old Alu subfamilies is found, suggesting extensive retroposon-assisted regulatory genome evolution during the divergence of the primates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.