Abstract
Small nucleolar RNAs (snoRNAs) are involved in many aspects of rRNA processing and maturation. In animals and yeast, a large number of snoRNAs are encoded within introns of protein-coding genes. These introns contain only single snoRNA genes and their processing involves exonucleolytic release of the snoRNA from debranched intron lariats. In contrast, some U14 genes in plants are found in small clusters and are expressed polycistronically. An examination of U14 flanking sequences in maize has identified four additional snoRNA genes which are closely linked to the U14 genes. The presence of seven and five snoRNA genes respectively on 2.05 and 0.97 kb maize genomic fragments further emphasizes the novel organization of plant snoRNA genes as clusters of multiple different genes encoding both box C/D and box H/ACA snoRNAs. The plant snoRNA gene clusters are transcribed as a polycistronic pre-snoRNA transcript from an upstream promoter. The lack of exon sequences between the genes suggests that processing of polycistronic pre-snoRNAs involves endonucleolytic activity. Consistent with this, U14 snoRNAs can be processed from both non-intronic and intronic transcripts in tobacco protoplasts such that processing is splicing independent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.