Abstract

AbstractThe local solid flow structure of the bubbling fluidized bed of sand particles was investigated in order to identify and characterize the clusters. Extensive experiments were carried out using an optical fibre probe, measuring the velocity and the diameter of clusters. Under all operating conditions, ascending and descending clusters co‐existed at all measurement locations. The locus of the inversion point at which the directions of cluster motion changed was determined. The velocity of the ascending clusters was a function of both superficial gas velocity and the radial and axial position. With increasing superficial gas velocity, both the velocity and the diameter of ascending clusters decreased near the wall. However, the velocity of descending clusters depended mainly on superficial gas velocity and the largest clusters existed closer to the wall. The results of this study help to explain cluster hydrodynamics in fluidized beds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.