Abstract

We use the cluster method to enumerate permutations avoiding consecutive patterns. We reprove and generalize in a unified way several known results and obtain new ones, including some patterns of lengths 4 and 5, as well as some infinite families of patterns of a given shape. By enumerating linear extensions of certain posets, we find a differential equation satisfied by the inverse of the exponential generating function counting occurrences of the pattern. We prove that for a large class of patterns, this inverse is always an entire function.We also complete the classification of consecutive patterns of length up to 6 into equivalence classes, proving a conjecture of Nakamura. Finally, we show that the monotone pattern asymptotically dominates (in the sense that it is easiest to avoid) all non-overlapping patterns of the same length, thus proving a conjecture of Elizalde and Noy for a positive fraction of all patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.