Abstract

The stability and magnetic properties of Fe clusters in the (Ga,Fe)N magnetic semiconductor is investigated by using first-principles density functional theory and local spin density+Hubbard U theoretical methods. The present results reveal the existence of ferrimagnetic clusters formed by three or four peripheral Fe atoms neighboring a central Fe atom acting as a robust magnetic anchoring point. These clusters have magnetic moments 2 or 3 times that of a single Fe atom and, when connected by sharing peripheral Fe atoms, can form stable, ordered magnetic regions where all of the central atoms are ferromagnetically coupled. The formation of these ferrimagnetic clusters is proposed here to be at the origin of the ferromagnetic behavior observed in (Ga,Fe)N samples showing chemical phase separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.