Abstract
The study examined the interactive effect of pH and P supply on cluster-root formation, carboxylate exudation and proton release by an alkaline-tolerant lupin species (Lupinus pilosus Murr.) in nutrient solution. The plants were exposed to 1 (P1, deficient) and 50 µM P (P50, adequate) for 34 days in nutrient solution at either pH 5.6 or 7.8. Plant biomass was not influenced by pH at P1, but at P50 shoot and root dry weights were 23 and 18% higher, respectively, at pH 7.8 than at pH 5.6. There was no significant difference in plant biomass between two P treatments regardless of medium pH. Phosphorus deficiency increased significantly the number of the second-order lateral roots compared with the P50 treatment. Both total root length and specific root length of plants grown at pH 5.6 were higher than those at pH 7.8 regardless of P supply. Cluster roots were formed at P1, but cluster-root number was 2-fold higher at pH 7.8 than pH 5.6. Roots released 16 and 31% more protons at pH 5.6 and 7.8, respectively, in P1 than in P50 treatments, and the rate of proton release followed the similar pattern. At pH 5.6, citrate exudation rate was 0.39 µmol g−1 root DW h−1 at P1, but was under the detection limit at P50; at pH 7.8, it was 2.4-fold higher in P1 than in P50 plants. High pH significantly increased citrate exudation rate in comparison to pH 5.6. The uptake of anions P and S was inhibited at P1 and high pH increased cations Na, Mg and Ca uptake. The results suggested that enhanced cluster-root formation, proton release and citrate exudation may account for the mechanism of efficient P acquisition by alkaline-tolerant L. pilosus well adapted to calcareous soils. Cluster-root formation and citrate exudation in L. pilosus can be altered by medium pH and P deficiency. Phosphorus deficiency-induced proton release may be associated with the reduced anion uptake, but high pH-induced proton release may be partly attributed to increased cation uptake.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.