Abstract
Clustering is an old research topic in data mining and machine learning. Most of the traditional clustering methods can be categorized as local or global ones. In this paper, a novel clustering method that can explore both the local and global information in the data set is proposed. The method, Clustering with Local and Global Regularization (CLGR), aims to minimize a cost function that properly trades off the local and global costs. We show that such an optimization problem can be solved by the eigenvalue decomposition of a sparse symmetric matrix, which can be done efficiently using iterative methods. Finally, the experimental results on several data sets are presented to show the effectiveness of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.