Abstract
Condition monitoring systems are commonly employed for incipient fault detection of wind turbines (WTs) to reduce downtime and increase availability. Data from supervisory control and data acquisition (SCADA) systems offer a potential monitoring solution. Multi-turbine approaches, which merge variables recorded from different WTs on the same wind farm, have been developed to improve fault detection performance by reducing the influence of variations in environmental conditions. However, in complex terrain, environmental conditions vary among WTs. Moreover, manual control (e.g., maintenance and curtailment) can also raise false alarms in some WTs. Here, the false alarm characteristics of a wind farm in complex terrain are investigated. A clustering-based multi-turbine fault detection approach is proposed, consisting of three steps: WT clustering, single-turbine modeling, and fault indicator calculation. First, k-medoids clustering with dependent multivariate dynamic time warping is applied for WT clustering. Then, an autoregressive neural network is used to construct a single-turbine model. Finally, residuals between median values of the model output of all WTs in the same cluster and the target WT are used to calculate the anomaly level. Evaluation results for real large-scale SCADA data confirm that the proposed approach raises fewer false alarms without degrading detection performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.