Abstract
With the growth of online tourism, it is important to analyze the reviews left by numerous customers on social networks to improve the hotel's online reputation. Hotel segmentation based on online reviews has attracted an increasing interest from many academics. The problem is that many hotel segmentation models overlook the fact that some customers focus on positive reviews when choosing a hotel, while others focus on negative ones. To address this shortcoming, this paper develops a novel approach to classify hotels using the ordered weighted averaging (OWA) operator, the 2-tuple linguistic model, and K-means clustering. The proposed approach has been evaluated with a real dataset from TripAdvisor, which contains more than 50 million customer online reviews on eight aspects of the hotel. The results show that the proposed model can produce denser and more separated clusters than the model without linguistic quantifiers. From a business point of view, this model enables hotels to distinguish customers' perceptions (from the less demanding to the most demanding) about their eight aspects, allowing them to specify which of them need to be improved and develop strategies more quickly. At the same time, it introduces a new way of ranking hotels online, allowing customers to create personalized rankings of hotels based on their degree of demand for various hotel aspects (better location, cleaner rooms, etc.) rather than the average ratings, so that they can select the most suitable hotels more quickly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.