Abstract

The use of matched filters on hyperspectral data has made it possible to detect faint signatures. This study uses a modified k-means clustering to improve matched filter performance. Several simple bivariate cases are examined in detail, and the interaction of filtering and partitioning is discussed. The authors show that clustering can reduce within-class variance and group pixels with similar correlation structures. Both of these features improve filter performance. The traditional k-means algorithm is modified to work with a sample of the image at each iteration and is tested against two hyperspectral datasets. A new "extreme" centroid initialization technique is introduced and shown to speed convergence. Several matched filtering formulations (the simple matched filter, the clutter matched filter, and the saturated matched filter) are compared for a variety of number of classes and synthetic hyperspectral images. The performance of the various clutter matched filter formulations is similar, all are about an order of magnitude better than the simple matched filter. Clustering is found to improve the performance of all matched filter formulations by a factor of two to five. Clustering in conjunction with clutter matched filtering can improve fifty-fold over the simple case, enabling very weak signals to be detected in hyperspectral images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call