Abstract
Crowdsourced testing is an emerging testing method in the field of software testing and industrial practice. Crowdsourced testing can provide a more realistic user experience. But crowdsourced workers are independent of each other, they may submit test reports for the same issue, resulting in highly redundant test reports submitted. In addition, crowdsourced test reports with multi-source heterogeneous information tend to have short text descriptions, but the screenshots are rich, and using only text information can lead to information bias in test reports. In view of this, this paper attempts to use the screenshot information in the crowdsourced test report to assist the text information to cluster the crowdsourced test report. Firstly, the text similarity and screenshot similarity of crowdsourced test reports are calculated respectively, then the similarity between crowdsourced test reports is weighted. Finally, test reports are grouped by clustering algorithm based on similarity measure. Testers only need to audit the test report as the representative, which greatly reduces the pressure of the tester’s report audit. The final experimental results show that the effective use of the screenshot information in the test report can achieve higher clustering accuracy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.