Abstract

Since the introduction into flood risk analysis, the partial duration series method has gained increasing acceptance as an appealing alternative to the annual maximum series method. However, when the base flow is low, there is clustering in the flood peak or flow volume point process. In this case, the general stochastic point process model is not suitable to risk analysis. Therefore, two types of models for flood risk analysis are derived on the basis of clustering stochastic point process theory in this paper. The most remarkable characteristic of these models is that the flood risk is considered directly within the time domain. The acceptability of different models are also discussed with the combination of the flood peak counted process in twenty years at Yichang station on the Yangtze river. The result shows that the two kinds of models are suitable ones for flood risk analysis, which are more flexible compared with the traditional flood risk models derived on the basis of annual maximum series method or the general stochastic point process theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.