Abstract
AbstractWe propose a Bayesian nonparametric clustering approach to study the spatial heterogeneity effect for functional data observed at spatially correlated locations. We consider a geographically weighted Chinese restaurant process equipped with a conditional autoregressive prior to capture fully the spatial correlation of function curves. To sample efficiently from our model, we customize a prior called Quadratic Gamma, which ensures conjugacy. We design a Markov chain Monte Carlo algorithm to infer simultaneously the posterior distributions of the number of groups and the grouping configurations. The superior numerical performance of the proposed method over competing methods is demonstrated using simulated examples and a U.S. annual precipitation study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.