Abstract

Branchio-oto-renal (BOR) syndrome is an autosomal dominant disorder, characterised by the association of branchial, otic and renal anomalies with variable degrees of severity. We have recently identified EYA1 , a human homologue of the Drosophila eyes absent gene, as the gene underlying this syndrome. The products of both genes share a highly conserved 271 amino acid C-terminal region (eyaHR). The eyaHR was also found in the products of two other human genes (EYA2 and EYA3), demonstrating the existence of a novel gene family. We report here on the complete genomic structure of EYA1. This gene consists of 16 coding exons and extends over 156 kb. It encodes various alternatively spliced transcripts differing only in their 5' regions. Sequence analysis of the entire EYA1 coding region was performed for 20 unrelated patients affected by BOR syndrome, and six novel mutations were identified. Among these mutations, two are missense mutations, highlighting amino acid residues essential for the function of the EYA1 protein, and one mutation comprises a de novo Alu insertion into an exon. This insertion presumably occurs by retrotransposition, and the mobile Alu element has a poly(A) tail that is unstable throughout generations. To date, 14 mutations have been detected in BOR patients, all of which are different. However, all the mutations are located within or in the immediate vicinity of the eyaHR; the significance of this clustering is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.